Gen-qiang Wang, Sui Sun Cheng ASYMPTOTIC STABILITY OF A NEUTRAL INTEGRO-DIFFERENTIAL EQUATION

نویسندگان

  • Gen-qiang Wang
  • Sui Sun Cheng
چکیده

The global stability behavior of a non-autonomous neutral functional integro-differential equation is studied. A sufficient condition for every solution of this equation to tend to zero is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Stability of Fractional Impulsive Neutral Stochastic Partial Integro-differential Equations with State-dependent Delay

In this article, we study the asymptotical stability in p-th moment of mild solutions to a class of fractional impulsive partial neutral stochastic integro-differential equations with state-dependent delay in Hilbert spaces. We assume that the linear part of this equation generates an α-resolvent operator and transform it into an integral equation. Sufficient conditions for the existence and as...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Fixed Points and Stability in Nonlinear Neutral Volterra Integro-differential Equations with Variable Delays

Abstract. In this paper we use the contraction mapping theorem to obtain asymptotic stability results of the zero solution of a nonlinear neutral Volterra integro-differential equation with variable delays. Some conditions which allow the coefficient functions to change sign and do not ask the boundedness of delays are given. An asymptotic stability theorem with a necessary and sufficient condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007